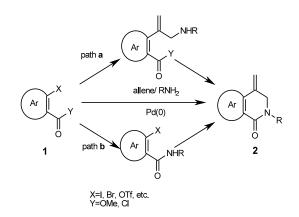


Tetrahedron Letters 43 (2002) 2601-2603

TETRAHEDRON LETTERS

Synthesis of N-substituted 4-methylene-3,4-dihydro-1(2H)-isoquinolin-1-ones via a palladium-catalysed three-component process

Ronald Grigg,^{a,*} Tossapol Khamnaen,^b Shuleewan Rajviroongit^b and Visuvanathar Sridharan^a


^aMolecular Innovation, Diversity and Automated Synthesis (MIDAS) Centre, School of Chemistry, Leeds University, Leeds LS2 9JT, UK

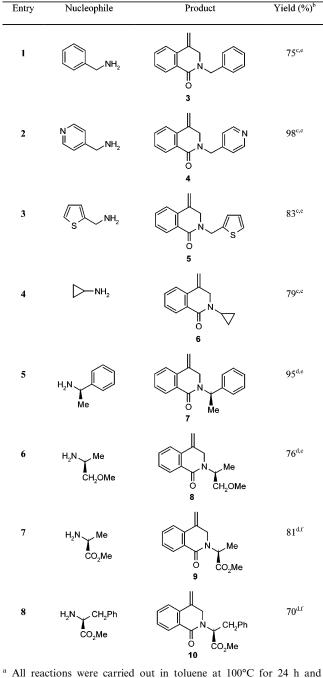
^bDepartment of Chemistry, Faculty of Science, Mahidol University, Rama 6 Rd, Rajthevee, Bangkok 10400, Thailand

Received 25 September 2001; revised 4 February 2002; accepted 12 February 2002

Abstract—A novel palladium-catalysed three-component cascade process involving 2-iodobenzoyl chloride or methyl 2-iodobenzoate, allene and primary aliphatic or aromatic amines furnishes N-substituted 4-methylene-3,4-dihydro-1(2H)-isoquinolin-1-ones in good yield. \bigcirc 2002 Elsevier Science Ltd. All rights reserved.

Allenes are versatile building blocks in palladiumcatalysed processes but are still under utilised in organic synthesis.¹ They function as powerful relay-switches in palladium-catalysed cyclisation-anion capture cascades.² Reactions of aryl/vinyl palladium(II) intermediates with allene lead to the formation of (π -allyl)palladium species able to undergo a wide range of transformations, including attack by nucleophiles,³ electrophiles⁴ or transmetallation.⁵ In the context of heterocycle synthesis allenes offer expeditious routes to a wide range of oxygen and nitrogen heterocycles.¹ A further feature of incorporation of allenes into hetero-

Scheme 1.

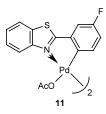

cycle synthesis is their ability to provide unusual substituents and substitution patterns. Particularly useful is the ability to engineer *exo*-methylene and 1,1-disubstituted *exo*-methylene moieties from allenes.⁶ Recently, we have developed several three-component syntheses of chroman-4-ones and quinolin-4-ones.^{7–9} As part of our ongoing interest in designing heterocyclic syntheses involving palladium-catalysed multicomponent processes utilising allenes,⁷ we explored the following process (Scheme 1), with both esters (1, Y=OMe) and acyl chlorides (1, Y=Cl).

2-Iodoesters (1, X=I, Y=OMe) would be expected to react with allene and a primary amine via path **a** to afford **2**, whereas 2-iodo acyl chlorides (1, X=I, Y= Cl) would be expected to react with allene and a primary amine via path **b** to give **2**. In this communication we report examples of both path **a** and path **b** processes. We selected methyl 2-iodobenzoate as the prototypical ester component. Methyl 2-iodobenzoate (1 mmol) reacted with allene (1 bar), Pd(OAc)₂ (10 mol%), PPh₃ (20 mol%), K₂CO₃ or Cs₂CO₃ (2 mol equiv.) and an aliphatic primary amine (1.2 mol equiv.) in toluene (10 ml) at 100°C for 24 h to afford **3–6** in good yield (Table 1).

Next, we briefly studied the use of chiral primary amines in the cascades (Table 1, entries 5–8). Thus, using (R)-(+)- α -methylbenzylamine, (S)-(-)-2-amino-1-methoxypropane, S-alanine methyl ester and S-phenyl-alanine methyl ester, afforded 7–10 in good yields

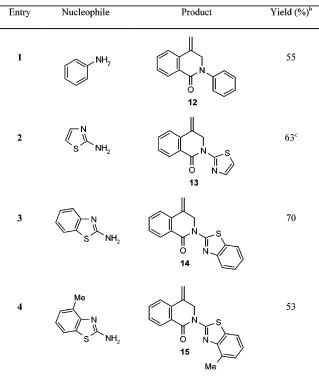
0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00329-5

^{*} Corresponding author.



- ^a All reactions were carried out in toluene at 100°C for 24 h and employed 1 mmol methyl 2-iodobenzoate, 10 mol% Pd(OAc)₂, 20 mol% PPh₃, 2 mol equiv. K_2CO_3 or Cs_2CO_3 and 1.2 or 2 mol equiv. amine.
- ^b Isolated yields.
- ^cCs₂CO₃ as base.
- ^d K₂CO₃ as base.
- e 1.2 mol equiv. amine.
- ^f2 mol equiv. amine.

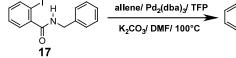
(Table 1, entries 5–8). In no cases was any racemisation detected.


The use of aromatic and heteroaromatic amines in the above cascades afforded lower yields of *N*-aryl 4-methyl-

ene-3,4-dihydro-1(2*H*)-isoquinolinones. We therefore explored the path **b** process for these amines with 2-iodobenzoyl chloride. Thus, 2-iodobenzoyl chloride (1.4 mmol) reacted with allene (1 bar), catalyst **11** (5 mol%),¹⁰ an aromatic or heteroaromatic amine (1 mmol), Cs_2CO_3 (2 mol equiv.) and 4 Å molecular sieves (3 g) in toluene (10 ml) at 100°C for 24 h to afford **12–15** in 53–70% yield (Table 2).

We also confirmed that the mechanism of the above reaction employing methyl 2-iodobenzoate follows path **a**, whereas 2-iodobenzoyl chloride follows path **b**. Thus, when the reaction of 2-iodobenzoyl chloride with 2-aminothiazole (Table 2, entry 2) was left for 24 h, a 1:1 mixture of **13** and **16** was obtained. Increasing the reaction time to 48 h resulted in the sole formation of **13**.

Table 2. Three-component allenylation–amination cascades $^{\rm a}$



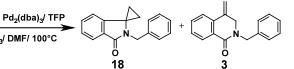
- ^a All reactions were carried out in toluene at 100°C for 24 h and employed 1.4 mmol 2-iodobenzoyl chloride, 5 mol% catalyst 11, 2 mol equiv. Cs_2CO_3 and 1.2 mol equiv. amine.
- ^b Isolated yields.
- ^c Reaction time 48 h.

Evidence for the reaction of methyl 2-iodobenzoate proceeding via path **a**, rather than path **b**, was gained from the reaction of 2-iodobenzamide **17** in the presence of allene (1 bar), $Pd_2(dba)_3$ (5 mol%), tri-2-furylphosphine (TFP) (10 mol%) and K₂CO₃ (2 mol equiv.) in DMF at 100°C for 24 h, which afforded a 1:1 mixture of **18** and **3**.¹¹

In our cascade (Table 1, entry 1) we did not observe **18**. Moreover, a control experiment reacting methyl 2iodobenzoate (1 mmol) and benzylamine (1 mmol) in toluene (10 ml) at 100°C for 24 h failed to give amide **17**.

In conclusion, we have developed two complementary three-component cascades for the synthesis of N-substituted 4-methylene-3,4-dihydro-1(2H)-isoquinolinones. Further work is in hand incorporating substituted allenes into this cascade.

Acknowledgements


We thank Leeds University and the Thailand Research Fund (TRF) of the Royal Golden Jubilee project for support.

References

1. Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Kahn, F. A.

Chem. Rev. 2000, 100, 3067-3126.

- Grigg, R.; Sridharan, V. J. Organomet. Chem. 1999, 576, 65–87.
- Grigg, R.; Köppen, I.; Rasparini, M.; Sridharan, V. Chem. Commun. 2001, 964–965.
- Gai, X.; Grigg, R.; Collard, S.; Muir, J. E. Chem. Commun. 2000, 1765–1766.
- Anwar, U.; Grigg, R.; Rasparini, M.; Savic, V.; Sridharan, V. Chem. Commun. 2000, 645–646.
- For recent examples see: (a) Larock, R. C.; He, Y.; Leong, W. W.; Han, X.; Refvik, M. D.; Zenner, J. M. J. Org. Chem. 1998, 63, 2154–6160; (b) Zenner, J. M.; Larock, R. C. J. Org. Chem. 1999, 64, 7312–7322; (c) Larock, R. C.; Tu, C.; Pace, P. J. Org. Chem. 1998, 63, 6859–6866; (d) Murakami, M.; Minamida, R.; Itami, K., Sawamura, M.; Ito, Y. Chem. Commun. 2000, 2293–2294; (e) Murakami, M.; Itami, K.; Ito, Y. Synlett 1999, 951–953; (f) Murakami, M.;

Itami, K.; Ito, Y. Angew. Chem., Int. Ed. 1998, 37, 3418–3420.

- Grigg, R.; Liu, A.; Shaw, D.; Suganthan, S.; Woodall, D.; Yoganathan, G. *Tetrahedron Lett.* 2000, 41, 7125–7128.
- Grigg, R.; Liu, A.; Shaw, D.; Suganthan, S.; Washington, M.; Woodall, D.; Yoganathan, G. *Tetrahedron Lett.* 2000, 41, 7129–7133.
- For a high pressure (20 atm) version of Ref. 6, see: (a) Okuro, K.; Alper, H. J. Org. Chem. 1997, 62, 1566–1567; (b) Xiao, X. J.; Alper, H. J. Org. Chem. 1999, 64, 9646–9652.
- Gai, X.; Grigg, R.; Ramzan, M. I.; Sridharan, V.; Collard, S.; Muir, J. E. J. Chem. Soc., Chem. Commun. 2000, 2053–2054.
- 11. Grigg, R.; Kordes, M. Eur. J. Org. Chem. 2001, 707-712.